The Australian BioCommons enhances digital life science research through world class collaborative distributed infrastructure. It aims to ensure that Australian life science research remains globally competitive, through sustained strategic leadership, research community engagement, digital service provision, training and support.
Space: Australian BioCommons
SEEK ID: https://workflowhub.eu/projects/30
Public web page: https://www.biocommons.org.au/
Organisms: No Organisms specified
WorkflowHub PALs: No PALs for this Team
Team created: 16th Feb 2021
Related items
Teams: Australian BioCommons, Sydney Informatics Hub
Organizations: Australian BioCommons, The University of Sydney
Teams: Australian BioCommons, Galaxy Australia
Organizations: University of Melbourne, Australian BioCommons

Expertise: Biochemistry, Proteomics, Mass Spectrometry Imaging
Tools: Mass spectrometry, Proteomics
Teams: Australian BioCommons
Organizations: University of Melbourne, Australian BioCommons

Teams: Australian BioCommons
Organizations: Australian BioCommons
The Australian BioCommons enhances digital life science research through world class collaborative distributed infrastructure. It aims to ensure that Australian life science research remains globally competitive, through sustained strategic leadership, research community engagement, digital service provision, training and support.
Teams: Australian BioCommons, QCIF Bioinformatics, Pawsey Supercomputing Research Centre, Sydney Informatics Hub, Janis, Melbourne Data Analytics Platform (MDAP), Galaxy Australia
Web page: https://www.biocommons.org.au/
IGVreport-nf
- Description
- Diagram
- User guide
- Workflow summaries
- Metadata
- Component tools
- Required (minimum) inputs/parameters
- Additional notes
- Help/FAQ/Troubleshooting
- Acknowledgements/citations/credits
Description
Quickly generate [IGV .html
...
GermlineStructuralV-nf
:wrench: This pipeline is currently under development :wrench:
- Description
- Diagram
- User guide
- Infrastructure usage and recommendations
- Benchmarking
- Workflow summaries
- Metadata
- Component tools
- Additional notes
- Help/FAQ/Troubleshooting
...
Type: Nextflow
Creators: Georgina Samaha, Marina Kennerson, Tracy Chew, Sarah Beecroft
Submitter: Georgina Samaha
PacBio HiFi genome assembly using hifiasm v2.1
General usage recommendations
Please see the Genome assembly with hifiasm on Galaxy Australia guide.
See change log
Acknowledgements
The workflow & the doc_guidelines template used are supported by the Australian BioCommons via Bioplatforms Australia funding, the Australian ...
Purge-duplicates-from-hifiasm-assembly
General recommendations for using Purge-duplicates-from-hifiasm-assembly
Please see the Genome assembly with hifiasm on Galaxy Australia
guide.
Acknowledgements
The workflow & the doc_guidelines template used are supported by the Australian BioCommons via Bioplatforms Australia funding, the Australian ...
BAM-to-FASTQ-QC
General recommendations for using BAM-to-FASTQ-QC
Please see the Genome assembly with hifiasm on Galaxy Australia
guide.
Acknowledgements
The workflow & the doc_guidelines template used are supported by the Australian BioCommons via Bioplatforms Australia funding, the Australian Research Data Commons (https://doi.org/10.47486/PL105) ...
IndexReferenceFasta-nf
===========
Fastq-to-BAM @ NCI-Gadi is a genome alignment workflow that takes raw FASTQ files, aligns them to a reference genome and outputs analysis ready BAM files. This workflow is designed for the National Computational Infrastructure's (NCI) Gadi supercompter, leveraging multiple nodes on NCI Gadi to run all stages of the workflow in parallel, either massively parallel using the scatter-gather approach or parallel by sample. It consists of a number of stages and follows the BROAD Institute's best practice ...
Type: Shell Script
Creators: Cali Willet, Tracy Chew, Georgina Samaha, Rosemarie Sadsad, Andrey Bliznyuk, Ben Menadue, Rika Kobayashi, Matthew Downton, Yue Sun
Submitter: Georgina Samaha
workflow-partial-gstacks-populations
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
This workflow is part of the reference-guided stacks workflow, https://workflowhub.eu/workflows/347
This workflow takes in bam files and a population map.
To generate bam files see: https://workflowhub.eu/workflows/351
workflow-partial-bwa-mem
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
This workflow is part of the reference-guided stacks workflow, https://workflowhub.eu/workflows/347
Inputs
- demultiplexed reads in fastq format, may be output from the QC workflow. Files are in a collection.
- reference genome in fasta format ...
workflow-partial-cstacks-sstacks-gstacks
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
This workflow takes in ustacks output, and runs cstacks, sstacks and gstacks.
To generate ustacks output see https://workflowhub.eu/workflows/349
For the full de novo workflow see https://workflowhub.eu/workflows/348
workflow-partial-ustacks-only
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
For the full de novo workflow see https://workflowhub.eu/workflows/348
You may want to run ustacks with different batches of samples.
- To be able to combine these later, there are some necessary steps - we need to keep track of how many ...
workflow-denovo-stacks
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
Inputs
- demultiplexed reads in fastq format, may be output from the QC workflow. Files are in a collection.
- population map in text format
Steps and outputs
ustacks:
- input reads go to ustacks.
- ustacks assembles the reads into matching ...
workflow-ref-guided-stacks
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
Inputs
- demultiplexed reads in fastq format, may be output from the QC workflow. Files are in a collection.
- population map in text format
- reference genome in fasta format
Steps and outputs
BWA MEM 2:
- The reads are mapped to the ...
workflow-qc-of-radseq-reads
These workflows are part of a set designed to work for RAD-seq data on the Galaxy platform, using the tools from the Stacks program.
Galaxy Australia: https://usegalaxy.org.au/
Stacks: http://catchenlab.life.illinois.edu/stacks/
Inputs
- demultiplexed reads in fastq format, in a collection
- two adapter sequences in fasta format, for input into cutadapt
Steps and outputs
The workflow can be modified to suit your own parameters.
The workflow steps are:
- Run ...
Shotgun Metagenomics Analysis
Analysis of metagenomic shotgun sequences including assembly, speciation, ARG discovery and more
Description
The input for this analysis is paired end next generation sequencing data from metagenomic samples. The workflow is designed to be modular, so that individual modules can be run depending on the nature of the metagenomics project at hand. More modules will be added as we develop them - this repo is a work in progress!
These scripts have been written ...
Type: Shell Script
Creators: Cali Willet, Rosemarie Sadsad, Tracy Chew, Smitha Sukumar, Elena Martinez, Christina Adler, Henry Lydecker, Fang Wang
Submitter: Tracy Chew
Combined workflow for large genome assembly
The tutorial document for this workflow is here: https://doi.org/10.5281/zenodo.5655813
What it does: A workflow for genome assembly, containing subworkflows:
- Data QC
- Kmer counting
- Trim and filter reads
- Assembly with Flye
- Assembly polishing
- Assess genome quality
Inputs:
- long reads and short reads in fastq format
- reference genome for Quast
Outputs:
- Data information - QC, kmers
- Filtered, trimmed reads
- Genome assembly, assembly graph, ...
Assess genome quality; can run alone or as part of a combined workflow for large genome assembly.
- What it does: Assesses the quality of the genome assembly: generate some statistics and determine if expected genes are present; align contigs to a reference genome.
- Inputs: polished assembly; reference_genome.fasta (e.g. of a closely-related species, if available).
- Outputs: Busco table of genes found; Quast HTML report, and link to Icarus contigs browser, showing contigs aligned to a reference ...
Assembly polishing subworkflow: Racon polishing with long reads
Inputs: long reads and assembly contigs
Workflow steps:
- minimap2 : long reads are mapped to assembly => overlaps.paf.
- overaps, long reads, assembly => Racon => polished assembly 1
- using polished assembly 1 as input; repeat minimap2 + racon => polished assembly 2
- using polished assembly 2 as input, repeat minimap2 + racon => polished assembly 3
- using polished assembly 3 as input, repeat minimap2 + racon => ...
Assembly with Flye; can run alone or as part of a combined workflow for large genome assembly.
- What it does: Assembles long reads with the tool Flye
- Inputs: long reads (may be raw, or filtered, and/or corrected); fastq.gz format
- Outputs: Flye assembly fasta; Fasta stats on assembly.fasta; Assembly graph image from Bandage; Bar chart of contig sizes; Quast reports of genome assembly
- Tools used: Flye, Fasta statistics, Bandage, Bar chart, Quast
- Input parameters: None required, but recommend ...
Trim and filter reads; can run alone or as part of a combined workflow for large genome assembly.
- What it does: Trims and filters raw sequence reads according to specified settings.
- Inputs: Long reads (format fastq); Short reads R1 and R2 (format fastq)
- Outputs: Trimmed and filtered reads: fastp_filtered_long_reads.fastq.gz (But note: no trimming or filtering is on by default), fastp_filtered_R1.fastq.gz, fastp_filtered_R2.fastq.gz
- Reports: fastp report on long reads, html; fastp report ...
This ARDC and BioCommons sponsored project delivers a key component of BioCommon’s vision for an ecosystem of platforms providing researchers with sophisticated data analysis and digital asset stewardship capabilities. The Bring Your Own Data (BYOD) Platform (https://www.biocommons.org.au/byod-expansion) has enabled highly accessible, highly available, highly scalable analysis and data sharing capabilities for the benefit of life science researchers nationally.
**This WorkflowHub collection ...