Working closely with researchers, the QCIF Bioinformatics team apply data management, processing, integration, analysis and visualisation techniques to maximise the potential value of biological and clinical data sets. QCIF Bioinformatics is a partner in the Australian BioCommons.
Space: Australian BioCommons
SEEK ID: https://workflowhub.eu/projects/41
Public web page: https://www.qcif.edu.au/
Organisms: No Organisms specified
WorkflowHub PALs: No PALs for this Team
Team created: 24th Jun 2021
Related items
- People (5)
- Spaces (1)
- Organizations (1)
- Publications (1)
- Documents (1)
- Workflows (20)
- Collections (2)
Teams: QCIF Bioinformatics
Organizations: QCIF
Teams: QCIF Bioinformatics, Galaxy Australia
Organizations: QCIF
https://orcid.org/0000-0003-2439-8650Teams: Galaxy Australia, QCIF Bioinformatics
Organizations: QCIF
https://orcid.org/0000-0002-1480-3563Teams: QCIF Bioinformatics
Organizations: QCIF
The Australian BioCommons enhances digital life science research through world class collaborative distributed infrastructure. It aims to ensure that Australian life science research remains globally competitive, through sustained strategic leadership, research community engagement, digital service provision, training and support.
Teams: Australian BioCommons, QCIF Bioinformatics, Pawsey Supercomputing Research Centre, Sydney Informatics Hub, Janis, Melbourne Data Analytics Platform (MDAP), Galaxy Australia, National Computational Infrastructure (NCI) WorkflowHub team
Web page: https://www.biocommons.org.au/
Abstract (Expand)
Authors: V. Murigneux, L. W. Roberts, B. M. Forde, M. D. Phan, N. T. K. Nhu, A. D. Irwin, P. N. A. Harris, D. L. Paterson, M. A. Schembri, D. M. Whiley, S. A. Beatson
Date Published: 25th Jun 2021
Publication Type: Journal
PubMed ID: 34172000
Citation: BMC Genomics. 2021 Jun 25;22(1):474. doi: 10.1186/s12864-021-07767-z.
This document is adapted from the 16S tutorials available at Galaxy [https://training.galaxyproject.org/training-material/topics/metagenomics/ tutorials/mothur-miseq-sop-short/tutorial.html] and [https://training.galaxyproject.org/training-material/ topics/metagenomics/tutorials/mothur-miseq-sop/tutorial.html]. Please also go through these tutorials for better understandings. Note: The steps mentioned in this document are well suited for V3-V4 regions. However the parameters could be varied if ...
Creators: Ahmed Mehdi, Saskia Hiltemann, Bérénice Batut, Dave Clements
Submitter: Sarah Williams
ONTViSc (ONT-based Viral Screening for Biosecurity)
Introduction
eresearchqut/ontvisc is a Nextflow-based bioinformatics pipeline designed to help diagnostics of viruses and viroid pathogens for biosecurity. It takes fastq files generated from either amplicon or whole-genome sequencing using Oxford Nanopore Technologies as input.
The pipeline can either: 1) perform a direct search on the sequenced reads, 2) generate clusters, 3) assemble the reads to generate longer contigs or 4) directly ...
Type: Nextflow
Creators: Marie-Emilie Gauthier, Craig Windell, Magdalena Antczak, Roberto Barrero
Submitter: Magdalena Antczak
The aim of this workflow is to handle the routine part of shotgun metagenomics data processing. The workflow is using the tools Kraken2 and Bracken for taxonomy classification and the KrakenTools to evaluate diversity metrics. This workflow was tested on Galaxy Australia. A How-to guide for the workflow can be found at: https://github.com/vmurigneu/kraken_howto_ga_workflows/blob/main/pages/taxonomy_kraken2_wf_guide.md
From the R1 and R2 fastq files of a single samples, make a scRNAseq counts matrix, and perform basic QC with scanpy. Then, do further processing by making a UMAP and clustering. Produces a processed AnnData Depreciated: use individual workflows insead for multiple samples
Takes fastqs and reference data, to produce a single cell counts matrix into and save in annData format - adding a column called sample with the sample name.
Take a scRNAseq counts matrix from a single sample, and perform basic QC with scanpy. Then, do further processing by making a UMAP and clustering. Produces a processed AnnData object.
Depreciated: use individual workflows insead for multiple samples
From the R1 and R2 fastq files of a single samples, make a scRNAseq counts matrix, and perform basic QC with scanpy. Then, do further processing by making a UMAP and clustering. Produces a processed AnnData
Depreciated: use individual workflows insead for multiple samples
Basic processing of a QC-filtered Anndata Object. UMAP, clustering e.t.c
Take an anndata file, and perform basic QC with scanpy. Produces a filtered AnnData object.
Takes fastqs and reference data, to produce a single cell counts matrix into and save in annData format - adding a column called sample with the sample name.
Loads a single cell counts matrix into an annData format - adding a column called sample with the sample name. (Input format - matrix.mtx, features.tsv and barcodes.tsv)
The aim of this workflow is to handle the routine part of shotgun metagenomics data processing on Galaxy Australia.
The workflow is using the tools MetaPhlAn2 for taxonomy classification and HUMAnN2 for functional profiling of the metagenomes. The workflow is based on the Galaxy Training tutorial 'Analyses of metagenomics data - The global picture' (Saskia Hiltemann, Bérénice Batut) https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/general-tutorial/tutorial.html#shotgun-metagenomics-data. ...
Type: Galaxy
Creators: Valentine Murigneux, Mike Thang, Saskia Hiltemann, Bérénice Batut, The workflow is based on the Galaxy Training tutorial Analyses of metagenomics data. Thank you to the Galaxy Australia team, Igor Makunin and Mike Thang for help with the workflow
Submitter: Valentine Murigneux
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for pipeline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html ...
Type: Galaxy
Creators: Saskia Hiltemann, Bérénice Batut, Dave Clements, Ahmed Mehdi
Submitter: Sarah Williams
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for pipeline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html ...
Type: Galaxy
Creators: Saskia Hiltemann, Bérénice Batut, Dave Clements, Ahmed Mehdi
Submitter: Sarah Williams
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for pipeline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html ...
Type: Galaxy
Creators: Saskia Hiltemann, Bérénice Batut, Dave Clements, Ahmed Mehdi
Submitter: Sarah Williams
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for pipeline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html ...
Type: Galaxy
Creators: Saskia Hiltemann, Bérénice Batut, Dave Clements, Ahmed Mehdi
Submitter: Sarah Williams
16S Microbial Analysis with mothur (short)
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for piepline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy ...
Type: Galaxy
Creators: Saskia Hiltemann, Bérénice Batut, Dave Clements, Ahmed Mehdi
Submitter: Sarah Williams
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for piepline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html ...
Type: Galaxy
Creators: Saskia Hiltemann, Bérénice Batut, Dave Clements, Ahmed Mehdi
Submitter: Sarah Williams
MetaDEGalaxy: Galaxy workflow for differential abundance analysis of 16s metagenomic data
microPIPE was developed to automate high-quality complete bacterial genome assembly using Oxford Nanopore Sequencing in combination with Illumina sequencing.
To build microPIPE we evaluated the performance of several tools at each step of bacterial genome assembly, including basecalling, assembly, and polishing. Results at each step were validated using the high-quality ST131 Escherichia coli strain EC958 (GenBank: HG941718.1). After appraisal of each step, we selected the best combination of ...
Type: Nextflow
Creators: Valentine Murigneux, Leah W Roberts, Brian M Forde, Minh-Duy Phan, Nguyen Thi Khanh Nhu, Adam D Irwin, Patrick N A Harris, David L Paterson, Mark A Schembri, David M Whiley, Scott A Beatson
Submitter: Valentine Murigneux
This collection houses some scanpy-based scRNAseq workflows on galaxy Australia.
The aim of these workflows is to handle the routine ‘boring’ part of single cell RNAseq data processing. It will produces an ‘AnnData’ object, which can then be used as a base for downstream analysis – either within galaxy or outside of it. AnnData is a standard format used by the ‘scanpy’ python package.
These workflows represent just one way of processing data for a ‘typical’ scRNAseq experiment – there are many ...
The workflows in this collection are from the '16S Microbial Analysis with mothur' tutorial for analysis of 16S data (Saskia Hiltemann, Bérénice Batut, Dave Clements), adapted for piepline use on galaxy australia (Ahmed Mehdi). The workflows developed in galaxy use mothur software package developed by Schloss et al https://pubmed.ncbi.nlm.nih.gov/19801464/.
Please also refer to the 16S tutorials available at Galaxy https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html ...
Maintainers: Sarah Williams, Ahmed Mehdi, Original galaxy workflow developers: Saskia Hiltemann, Bérénice Batut, Dave Clements
Number of items: 7
Tags: Not specified