SEEK ID: https://workflowhub.eu/people/575
Location:
Spain
ORCID:
https://orcid.org/0000-0002-1442-3544
Joined: 28th Sep 2023
Expertise: Not specified
Tools: Not specified
Related items
A space managed by WorkflowHub administrators for teams that don't want/need to manage their own space.
Teams: IBISBA Workflows, NMR Workflow, UNLOCK, NanoGalaxy, Galaxy Climate, PNDB, IMBforge, COVID-19 PubSeq: Public SARS-CoV-2 Sequence Resource, LBI-RUD, Nick-test-team, usegalaxy-eu, Italy-Covid-data-Portal, UX trial team, Integrated and Urban Plant Pathology Laboratory, SARS-CoV-2 Data Hubs, lmjxteam2, virAnnot pipeline, Ay Lab, iPC: individualizedPaediatricCure, Harkany Lab, Genomics Coordination Center, EJPRD WP13 case-studies workflows, Common Workflow Language (CWL) community, Testing, SeBiMER, IAA-CSIC, MAB - ATGC, Probabilistic graphical models, GenX, Snakemake-Workflows, ODA, IPK BIT, CO2MICS Lab, FAME, CHU Limoges - UF9481 Bioinformatique / CNR Herpesvirus, Quadram Institute Bioscience - Bioinformatics, HecatombDevelopment, Institute of Human Genetics, Testing RO Crates, Test Team, Applied Computational Biology at IEG/HMGU, INFRAFRONTIER workflows, OME, TransBioNet, OpenEBench, Bioinformatics and Biostatistics (BIO2 ) Core, VIB Bioinformatics Core, CRC Cohort, ICAN, MustafaVoh, Single Cell Unit, CO-Graph, emo-bon, TestEMBL-EBIOntology, CINECA, Toxicology community, Pitagora-Network, Workflows Australia, Medizinisches Proteom-Center, Medical Bioinformatics, AGRF BIO, EU-Openscreen, X-omics, ELIXIR Belgium, URGI, Size Inc, GA-VirReport Team, The Boucher Lab, Air Quality Prediction, pyiron, CAPSID, Edinburgh Genomics, Defragmentation TS, NBIS, Phytoplankton Analysis, Seq4AMR, Workflow registry test, Read2Map, SKM3, ParslRNA-Seq: an efficient and scalable RNAseq analysis workflow for studies of differentiated gene expression, de.NBI Cloud, Meta-NanoSim, ILVO Plant Health, EMERGEN-BIOINFO, KircherLab, Apis-wings, BCCM_ULC, Dessimoz Lab, TRON gGmbH, GEMS at MLZ, Computational Science at HZDR, Big data in biomedicine, TRE-FX, MISTIC, Guigó lab, Statistical genetics, Delineating Regions-of-interest for Mass Spectrometry Imaging by Multimodally Corroborated Spatial Segmentation, WES, Bioinformatics Unit @ CRG, Bioinformatics Innovation Lab, BSC-CES, ELIXIR Proteomics, Black Ochre Data Labs, Zavolan Lab, Metabolomics-Reproducibility, Team Cardio, NGFF Tools, Bioinformatics workflows for life science, Workflows for geographic science, Pacific-deep-sea-sponges-microbiome, CSFG, SNAKE, Katdetectr, INFRAFRONTIER GmbH, PerMedCoE, EuroScienceGateway, Euro-BioImaging, EOSC-Life WP3 OC Team, cross RI project, ANSES-Ploufragan, SANBI Pathogen Bioinformatics, Biodata Analysis Group, DeSci Labs, Erasmus MC - Viroscience Bioinformatics, ARA-dev, Mendel Centre for Plant Genomics and Proteomics, Metagenomic tools, WorkflowEng, Polygenic Score Catalog, bpm, scNTImpute, Systems Biotechnology laboratory, Cimorgh IT solutions, MLme: Machine Learning Made Easy, Hurwitz Lab, Dioscuri TDA, Scipion CNB, System Biotechnology laboratory, yPublish - Bioinfo tools, NIH CFDE Playbook Workflow Partnership, MMV-Lab, EMBL-CBA, EBP-Nor, Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data, Bioinformatics Laboratory for Genomics and Biodiversity (LBGB), multi-analysis dFC
Web page: Not specified
Scipion team located at the National Centre for Biotechnology (CNB, CSIC)
Space: Independent Teams
Public web page: https://scipion.i2pc.es/
Organisms: Not specified
This document provides a detailed explanation of all the workflows, including their functionalities, problems they address, advantages, disadvantages, implementation requirements, and open points for future versions.
Creator: Daniel Marchan
Submitter: Daniel Marchan
The ultimate-level complexity workflow is one among a collection of workflows designed to address tasks up to CTF estimation. In addition to the functionalities provided by layer 0 and 1 workflows, this workflow aims to enhance the quality of both acquisition images and processing.
Quality control protocols
…
Combination of methods
- CTF consensus
- New methods to compare ctf estimations
- CTF xmipp criteria (richer parameters i.e. ice detection)
Advantages:
- Control of ...
The second-level complexity workflow is one among a collection of workflows designed to address tasks up to CTF estimation. In addition to the functionalities provided by the layer 0 workflow, this workflow aims to enhance the quality of acquisition images using quality protocols.
Quality control protocols
-
Movie max shift: automatic reject those movies whose frames move more than a given threshold.
-
Tilt analysis: quality score based in the Power Spectrum Density (astigmatism and ...
The simplest workflow among a collection of workflows intended to solve tasks up to CTF estimation.
Basic processing pipeline
-
Import movies
-
Movie alignment (recommended 2 GPUs)
-
CTF estimation
Monitor acquisition
- Monitor summary protocol:
- Monitor basic parameters (item counts, drift, resolution, astigmatism, defocus, etc.)
- Raise alarms (mail setting available)
- Provides information of the basic steps (html report)
A set of generic and automatic workflows designed to:
-
Run on-the-fly and unattended.
-
Maintain robust stability for a wide range of samples.
-
Covers steps from movies to CTF estimation (for the moment).
-
Monitor the acquisition process and provide user feedback.
-
Comprise three proposed workflows, each with an additional layer of complexity.