Workflows
What is a Workflow?Filters
This is the workflow for the recreation potential component of the cultural ecosystems digital twin
Type: Shell Script
Creators: Chris Andrews, Will Bolton, Simon Rolph, Dylan Carbone, Jan Dick
Submitter: Simon Rolph
GBMatch_CNN
Work in progress... Predicting TS & risk from glioblastoma whole slide images
Reference
Upcoming paper: stay tuned...
Dependencies
python 3.7.7
randaugment by Khrystyna Faryna: https://github.com/tovaroe/pathology-he-auto-augment
tensorflow 2.1.0
scikit-survival 0.13.1
pandas 1.0.3
lifelines 0.25.0
Description
The pipeline implemented here predicts transcriptional subtypes and survival of glioblastoma patients based on H&E stained whole slide scans. Sample data is ...
A hecatomb is a great sacrifice or an extensive loss. Heactomb the software empowers an analyst to make data driven decisions to 'sacrifice' false-positive viral reads from metagenomes to enrich for true-positive viral reads. This process frequently results in a great loss of suspected viral sequences / contigs.
For information about installation, usage, tutorial etc please refer to the documentation: https://hecatomb.readthedocs.io/en/latest/
Quick start guide
Install Hecatomb from Bioconda ...
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
About this workflow:
- Inputs: transdecoder-peptides.fasta, transdecoder-nucleotides.fasta
- Runs many steps ...
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
About this workflow:
- Input: merged_transcriptomes.fasta.
- Runs TransDecoder to produce longest_transcripts.fasta ...
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
About this workflow:
- Inputs: multiple transcriptome.gtfs from different tissues, genome.fasta, coding_seqs.fasta, ...
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
About this workflow:
- Run this workflow per tissue.
- Inputs: masked_genome.fasta and the trimmed RNAseq reads ...
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
About this workflow:
- Repeat this workflow separately for datasets from different tissues.
- Inputs = collections ...
JAX NGS Operations Nextflow DSL2 Pipelines
This repository contains production bioinformatic analysis pipelines for a variety of bulk 'omics data analysis. Please see the Wiki documentation associated with this repository for all documentation and available analysis workflows.
Type: Nextflow
Creators: Michael Lloyd, Brian Sanderson, Barry Guglielmo, Sai Lek, Peter Fields, Harshpreet Chandok, Carolyn Paisie, Gabriel Rech, Ardian Ferraj, Anuj Srivastava
Submitter: Michael Lloyd
Complete workflow for TANGO as reported in Lecomte et al (2024), "Revealing the dynamics and mechanisms of bacterial interactions in cheese production with metabolic modelling", Metabolic Eng. 83:24-38 https://doi.org/10.1016/j.ymben.2024.02.014
- Parameters for individual models are obtained by optimization
- Individual dynamics and community dynamics are simulated
- Figures for the manuscript are assembled from the results.