Expertise: Machine Learning, R, Scientific workflow developement, Workflows, Agronomy, Biostatistics
Teams: CRIM - Computer Research Institute of Montréal
Organizations: CRIM
https://orcid.org/0000-0003-4862-3349Expertise: AI, Machine Learning, Python, Scientific workflow developement, Software Engineering, Workflows, Geospatial, Computer Vision
Tools: CWL, Databases, Jupyter notebook, Python, Workflows, Conda, OGC
Research Interest: Bioinformatics | Deep Learning | DevOps | Generative AI | Knowledge Graphs. Highly communicative, task oriented, feature responsive, time oriented, approachable, solution seeker and initiative taker focussed professional working across a wide variety of topics which includes bioinformatics involving genomes, transcriptomes, metagenomes and metatranscriptomes focussing on datasets coming from the plant, bacterial and fungal genome (Illumina Miseq, NextSeq, NovaSeq, PacBio, Oxford ...
Expertise: Bioinformatics, Genomics, Machine Learning
Tools: Python, R, Machine Learning
I am a Ph.D. student in Gong lab. I am interested in cancer genomics, including the mining of genetic risk determinants in cancer, functional prediction of genetic variants, tumor-associated molecular epidemiology, large-scale data integration, analysis, and mining, as well as the construction of bioinformatical data platforms.
Teams: EU-Openscreen
Organizations: Fraunhofer Institute for Translational Medicine and Pharmacology ITMP
https://orcid.org/0000-0002-8080-9170Expertise: Bioinformatics, Cheminformatics, Machine Learning
Tools: Workflows
Teams: Applied Computational Biology at IEG/HMGU
Organizations: Helmholtz Zentrum München
https://orcid.org/0000-0003-4796-1661Expertise: Software Engineering, Machine Learning, AI
Tools: Java, Jupyter notebook, Web services, Python
Expertise: Bioinformatics, Computer Science, Data Management, Genetics, Genomics, Machine Learning, Metagenomics, NGS, Scientific workflow developement, Software Engineering
Tools: Databases, Galaxy, Genomics, Jupyter notebook, Machine Learning, Nextflow, nf-core, PCR, Perl, Python, R, rtPCR, Snakemake, Transcriptomics, Virology, Web, Web services, Workflows
Dad, husband and PhD. Scientist, technologist and engineer. Bibliophile. Philomath. Passionate about science, medicine, research, computing and all things geeky!
Teams: Bioinformatics Innovation Lab
Organizations: Pondicherry University
https://orcid.org/0000-0003-4854-8238Expertise: Bioinformatics, Systems Biology, Machine Learning
Tools: Galaxy, Cytoscape, Databases, Jupyter notebook, R, Python
Ph.D. Student at Department of Bioinformatics, Pondicherry University
Teams: MAB - ATGC
Organizations: Centre National de la Recherche Scientifique (CNRS)
https://orcid.org/0000-0003-3791-3973Expertise: Bioinformatics, Genomics, algorithm, Machine Learning, Metagenomics, NGS, Computer Science
Tools: Transcriptomics, Genomics, Python, C/C++, Web services, Workflows
Teams: GalaxyProject SARS-CoV-2, nf-core viralrecon, EOSC-Life - Demonstrator 7: Rare Diseases, iPC: individualizedPaediatricCure, EJPRD WP13 case-studies workflows, TransBioNet, OpenEBench, ELIXIR Proteomics
Organizations: Barcelona Supercomputing Center (BSC-CNS), ELIXIR
https://orcid.org/0000-0003-4929-1219Expertise: Bioinformatics, Computer Science, AI, Machine Learning
Computer Engineer in Barcelona Supercomputing Center (BSC)
Teams: Harkany Lab
Organizations: Medical University of Vienna
https://orcid.org/0000-0001-5920-2190Expertise: Systems Biology, Bioengineering, Bioinformatics, Neuroscience
Tools: Workflows, Machine Learning, Transcriptomics
Research Director @ INRAe
Abstract (Expand)
Authors: Anna-Lena Lamprecht, Magnus Palmblad, Jon Ison, Veit Schwämmle, Mohammad Sadnan Al Manir, Ilkay Altintas, Christopher J. O. Baker, Ammar Ben Hadj Amor, Salvador Capella-Gutierrez, Paulos Charonyktakis, Michael R. Crusoe, Yolanda Gil, Carole Goble, Timothy J. Griffin, Paul Groth, Hans Ienasescu, Pratik Jagtap, Matúš Kalaš, Vedran Kasalica, Alireza Khanteymoori, Tobias Kuhn, Hailiang Mei, Hervé Ménager, Steffen Möller, Robin A. Richardson, Vincent Robert, Stian Soiland-Reyes, Robert Stevens, Szoke Szaniszlo, Suzan Verberne, Aswin Verhoeven, Katherine Wolstencroft
Date Published: 2021
Publication Type: Journal
DOI: 10.12688/f1000research.54159.1
Citation: F1000Res 10:897
Name: PhysioNet CascadeCSVM Kfold Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
Kfold to evaluate CascadeCSVM accuracy on PhysioNet dataset (https://b2drop.bsc.es/index.php/s/8Q8MefXX2rrzaWs). This application used dislib-0.9.0
Name: PhysioNet kNN Kfold Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
Kfold to evaluate kNN accuracy on PhysioNet dataset (https://b2drop.bsc.es/index.php/s/8Q8MefXX2rrzaWs). This application used dislib-0.9.0
Name: PhysioNet RF Kfold Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
Kfold to evaluate RandomForest accuracy on PhysioNet dataset (https://b2drop.bsc.es/index.php/s/8Q8MefXX2rrzaWs). This application used dislib-0.9.0
Name: GridSearchCV Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
GridSearch of kNN algorithm for the iris.csv dataset (https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv). This application used dislib-0.9.0
Name: GridSearchCV Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
GridSearch of kNN algorithm for the iris.csv dataset (https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv). This application used dislib-0.9.0
Name: KMeans Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
KMEans for clustering the housing.csv dataset (https://github.com/sonarsushant/California-House-Price-Prediction/blob/master/housing.csv). This application used dislib-0.9.0
Name: Random Forest Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum4 This is an example of Random Forest algorithm from dislib. To show the usage, the code generates a synthetical input matrix. The results are printed by screen. This application used dislib-0.9.0
Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data
In recent years, convolutional neural network (CNN)-based methods have shown remarkable performance in the denoising and reconstruction of super-resolved structured illumination microscopy (SR-SIM) data. Therefore, CNN-based architectures have been the main focus of existing studies. Recently, however, an alternative and highly competitive deep learning architecture, ...
Name: TruncatedSVD (Randomized SVD) Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum4
TruncatedSVD (Randomized SVD) for computing just 456 singular values out of a (3.6M x 1200) size matrix. The input matrix represents a CFD transient simulation of aire moving past a cylinder. This application used dislib-0.9.0
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
MMV Im2Im Transformation
A generic python package for deep learning based image-to-image transformation in biomedical applications
The main branch will be further developed in order to be able to use the latest state of the art techniques and methods in the future. To reproduce the results of our manuscript, we refer to the branch ...
This workflow represents the Default ML Pipeline for AutoML feature from MLme. Machine Learning Made Easy (MLme) is a novel tool that simplifies machine learning (ML) for researchers. By integrating four essential functionalities, namely data exploration, AutoML, CustomML, and visualization, MLme fulfills the diverse requirements of researchers while eliminating the need for extensive coding efforts. MLme serves as a valuable resource that empowers researchers of all technical levels to leverage ...
IDR is based on OMERO and thus all what we show in this notebook can be easily adjusted for use against another OMERO server, e.g. your institutional OMERO server instance.
The main objective of this notebook is to demonstrate how public resources such as the IDR can be used to train your neural network or validate software tools.
The authors of the PLOS Biology paper, "Nessys: A new set of tools for the automated detection of nuclei within intact tissues and dense 3D cultures" published in August ...
Learning objectives
- Read data to analyse from an object store.
- Analyse data in parallel using Dask.
- Show how to use public resources to train neural network.
- Load labels associated to the original data
- Compare results with ground truth.
The authors of the PLOS Biology paper, "Nessys: A new set of tools for the automated detection of nuclei within intact tissues and dense 3D cultures" published in August 2019: https://doi.org/10.1371/journal.pbio.3000388, considered several image ...
Type: Unrecognized workflow type
Creators: Jean-Marie Burel, Petr Walczysko
Submitter: Jean-Marie Burel
The image is referenced in the paper "NesSys: a novel method for accurate nuclear segmentation in 3D" published August 2019 in PLOS Biology: https://doi.org/10.1371/journal.pbio.3000388 and can be viewed online in the Image Data Resource.
This original image was converted into the Zarr format. The analysis results produced by the authors of the paper were converted into labels and linked to the Zarr file which was placed into a public ...
Type: Unrecognized workflow type
Creators: Jean-Marie Burel, Petr Walczysko
Submitter: Jean-Marie Burel
ABR_Threshold_Detection
What is this?
This code can be used to automatically determine hearing thresholds from ABR hearing curves.
One of the following methods can be used for this purpose:
- neural network (NN) training,
- calibration of a self-supervised sound level regression (SLR) method
on given data sets with manually determined hearing thresholds.
Installation:
Run inside the src directory:
Installation as python package
pip install -e ./src (Installation as python
...