Workflows
What is a Workflow?Filters
ONTViSc (ONT-based Viral Screening for Biosecurity)
Introduction
eresearchqut/ontvisc is a Nextflow-based bioinformatics pipeline designed to help diagnostics of viruses and viroid pathogens for biosecurity. It takes fastq files generated from either amplicon or whole-genome sequencing using Oxford Nanopore Technologies as input.
The pipeline can either: 1) perform a direct search on the sequenced reads, 2) generate clusters, 3) assemble the reads to generate longer contigs or 4) directly ...
Type: Nextflow
Creators: Marie-Emilie Gauthier, Craig Windell, Magdalena Antczak, Roberto Barrero
Submitter: Magdalena Antczak
The aim of this workflow is to handle the routine part of shotgun metagenomics data processing. The workflow is using the tools Kraken2 and Bracken for taxonomy classification and the KrakenTools to evaluate diversity metrics. This workflow was tested on Galaxy Australia. A How-to guide for the workflow can be found at: https://github.com/vmurigneu/kraken_howto_ga_workflows/blob/main/pages/taxonomy_kraken2_wf_guide.md
Nextflow Pipeline for DeepVariant
This repository contains a Nextflow pipeline for Google’s DeepVariant, optimised for execution on NCI Gadi.
Quickstart Guide
- Edit the
pipeline_params.yml
file to include:
samples
: a list of samples, where each sample includes the sample name, BAM file path (ensure corresponding .bai is in the same directory), path to an optional regions-of-interest BED file (set to''
if not required), and the model type.ref
: path to the reference FASTA (ensure ...
Post-genome assembly quality control workflow using Quast, BUSCO, Meryl, Merqury and Fasta Statistics, with updates November 2024.
Workflow inputs: reads as fastqsanger.gz (not fastq.gz), and primary assembly.fasta. (To change reads format: click on the pencil icon next to the file in the Galaxy history, then "Datatypes", then set "New type" as fastqsanger.gz). Note: the reads should be those that were used for the assembly (i.e., the filtered/cleaned reads), not the raw reads.
What it does: ...
Type: Galaxy
Creators: Kate Farquharson, Gareth Price, Simon Tang, Anna Syme
Submitters: Johan Gustafsson, Anna Syme
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
Inputs required: assembled-genome.fasta, hard-repeat-masked-genome.fasta, and (because this workflow maps known mRNA ...
Genome assembly workflow for nanopore reads, for TSI
Input:
- Nanopore reads (can be in format: fastq, fastq.gz, fastqsanger, or fastqsanger.gz)
Optional settings to specify when the workflow is run:
- [1] how many input files to split the original input into (to speed up the workflow). default = 0. example: set to 2000 to split a 60 GB read file into 2000 files of ~ 30 MB.
- [2] filtering: min average read quality score. default = 10
- [3] filtering: min read length. default = 200
- [4] ...
Scaffolding using HiC data with YAHS
This workflow has been created from a Vertebrate Genomes Project (VGP) scaffolding workflow.
- For more information about the VGP project see https://galaxyproject.org/projects/vgp/.
- The scaffolding workflow is at https://dockstore.org/workflows/github.com/iwc-workflows/Scaffolding-HiC-VGP8/main:main?tab=info
- Please see that link for the workflow diagram.
Some minor changes have been made to better fit with TSI project data:
- optional inputs of SAK info ...
This is part of a series of workflows to annotate a genome, tagged with TSI-annotation
.
These workflows are based on command-line code by Luke Silver, converted into Galaxy Australia workflows.
The workflows can be run in this order:
- Repeat masking
- RNAseq QC and read trimming
- Find transcripts
- Combine transcripts
- Extract transcripts
- Convert formats
- Fgenesh annotation
Workflow information:
- Input = genome.fasta.
- Outputs = soft_masked_genome.fasta, hard_masked_genome.fasta, ...
From the R1 and R2 fastq files of a single samples, make a scRNAseq counts matrix, and perform basic QC with scanpy. Then, do further processing by making a UMAP and clustering. Produces a processed AnnData Depreciated: use individual workflows insead for multiple samples
Takes fastqs and reference data, to produce a single cell counts matrix into and save in annData format - adding a column called sample with the sample name.