The workflow takes trimmed HiC forward and reverse reads, and Pri/Alt assemblies to produce a scaffolded primary assembliy (and alternate contigs) using YaHS. It also runs all the QC analyses (gfastats, BUSCO, and Merqury).
The workflow takes a trimmed HiFi reads collection, Pri/Alt contigs, and the values for transition parameter and max coverage depth (calculated from WF1) to run Purge_Dups. It produces purged Pri and Alt contigs assemblies, and runs all the QC analysis (gfastats, BUSCO, and Merqury).
The workflow takes a trimmed HiFi reads collection, and max coverage depth (calculated from WF1) to run Hifiasm in HiFi solo mode. It produces a Pri/Alt assembly, and runs all the QC analysis (gfastats, BUSCO, and Merqury).
The workflow requires the user to provide:
- ENSEMBL link address of the annotation GFF3 file
- ENSEMBL link address of the assembly FASTA file
- NCBI taxonomy ID
- BUSCO lineage
- OMArk database
Thw workflow will produce statistics of the annotation based on AGAT, BUSCO and OMArk.
The workflow takes trimmed HiC forward and reverse reads, and Hap1/Hap2 assemblies to produce Hap1 and Hap2 scaffolded assemblies using YaHS. It also runs all the QC analyses (gfastats, BUSCO, Merqury and Pretext).
The workflow takes a trimmed HiFi reads collection, Hap1/Hap2 contigs, and the values for transition parameter and max coverage depth (calculated from WF1) to run Purge_Dups. It produces purged Hap1 and Hap2 contigs assemblies, and runs all the QC analysis (gfastats, BUSCO, and Merqury).
The workflow takes a trimmed HiFi reads collection, Forward/Reverse HiC reads, and the max coverage depth (calculated from WF1) to run Hifiasm in HiC phasing mode. It produces both Pri/Alt and Hap1/Hap2 assemblies, and runs all the QC analysis (gfastats, BUSCO, and Merqury). The default Hifiasm purge level is Light (l1).
The workflow takes a HiFi reads collection, runs FastQC and SeqKit, filters with Cutadapt, and creates a MultiQC report. The main outputs are a collection of filtred reads, a report with raw and filtered reads stats, and a table with raw reads stats.
The workflow takes a trimmed HiFi reads collection, runs Meryl to create a K-mer database, Genomescope2 to estimate genome properties and Smudgeplot to estimate ploidy. The main results are K-mer database and genome profiling plots, tables, and values useful for downstream analysis. Default K-mer length and ploidy for Genomescope are 21 and 2, respectively.
The workflow takes a paired-reads collection (like illumina WGS or HiC), runs FastQC and SeqKit, trims with Fastp, and creates a MultiQC report. The main outputs are a paired collection of trimmed reads, a report with raw and trimmed reads stats, and a table with raw reads stats.
The workflow takes trimmed HiC forward and reverse reads, and one assembly (e.g.: Hap1 or Pri or Collapsed) to produce a scaffolded assembly using YaHS. It also runs all the QC analyses (gfastats, BUSCO, and Merqury).
The workflow takes a trimmed Illumina WGS paired-end reads collection, Collapsed contigs, and the values for transition parameter and max coverage depth (calculated from WF1) to run Purge_Dups. It produces purged Collapsed contigs assemblies, and runs all the QC analysis (gfastats, BUSCO, and Merqury).
The workflow takes a trimmed Illumina paired-end reads collection, runs Meryl to create a K-mer database, Genomescope2 to estimate genome properties and Smudgeplot to estimate ploidy. The main results are K-mer ddatabase and genome profiling plots, tables, and values useful for downstream analysis. Default K-mer length and ploidy for Genomescope are 21 and 2, respectively.
The workflow takes ONT reads collection, runs SeqKit and Nanoplot. The main outputs are a table and plots of raw reads stats.