View Publication
Export
Abstract:
While metagenome sequencing may provide insights on the genome sequences and composition of microbial communities, metatranscriptome analysis can be useful for studying the functional activity of a microbiome. RNA-Seq data provides the possibility to determine active genes in the community and how their expression levels depend on external conditions. Although the field of metatranscriptomics is relatively young, the number of projects related to metatranscriptome analysis increases every year and the scope of its applications expands. However, there are several problems that complicate metatranscriptome analysis: complexity of microbial communities, wide dynamic range of transcriptome expression and importantly, the lack of high-quality computational methods for assembling meta-RNA sequencing data. These factors deteriorate the contiguity and completeness of metatranscriptome assemblies, therefore affecting further downstream analysis.
Here we present MetaGT, a pipeline for
de novo
assembly of metatranscriptomes, which is based on the idea of combining both metatranscriptomic and metagenomic data sequenced from the same sample. MetaGT assembles metatranscriptomic contigs and fills in missing regions based on their alignments to metagenome assembly. This approach allows to overcome described complexities and obtain complete RNA sequences, and additionally estimate their abundances. Using various publicly available real and simulated datasets, we demonstrate that MetaGT yields significant improvement in coverage and completeness of metatranscriptome assemblies compared to existing methods that do not exploit metagenomic data. The pipeline is implemented in NextFlow and is freely available from
https://github.com/ablab/metaGT
.
SEEK ID: https://workflowhub.eu/publications/20
DOI: 10.3389/fmicb.2022.981458
Teams: HoloFood at MGnify
Publication type: Journal
Journal: Frontiers in Microbiology
Citation: Front. Microbiol. 13,981458
Date Published: 28th Oct 2022
Registered Mode: by DOI
Submitter
Citation
Shafranskaya, D., Kale, V., Finn, R., Lapidus, A. L., Korobeynikov, A., & Prjibelski, A. D. (2022). MetaGT: A pipeline for de novo assembly of metatranscriptomes with the aid of metagenomic data. In Frontiers in Microbiology (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fmicb.2022.981458
Activity
Views: 1354
Created: 12th Apr 2023 at 10:54
Last updated: 12th Apr 2023 at 10:56
Tags
This item has not yet been tagged.
Attributions
None