Workflows

What is a Workflow?
36 Workflows visible to you, out of a total of 53
Stable

Name: Incrementation and Fibonacci Access Level: public License Agreement: Apache2 Platform: COMPSs

Description

Brief Overview: Demonstrates COMPSs task parallelism with increment and Fibonacci computations. Helps to understand COMPSs.

Detailed Description:

  1. Performs multiple increments of input values in parallel using COMPSs.
  2. Concurrently calculates Fibonacci numbers using recursive COMPSs tasks.
  3. Demonstrates task synchronization via compss_wait_on.

Execution

...

Type: COMPSs

Creators: Ashish Bhawel, Ashish Bhawel, Uploading this Workflow under the guidance of Raül Sirvent.

Submitter: Ashish Bhawel

Stable

Calculates the Fibonacci series up to a specified length.

Type: COMPSs

Creator: Uploading this Workflow under the guidance of Raül Sirvent.

Submitter: Ashish Bhawel

Stable

Name: Matmul GPU Case 1 Cache-ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

Matmul running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000)             B: shape (56_900_000, 10)   block_size (11_380_000, 10)             C: shape (320, 10)                block_size ...

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.798.1

Stable

Name: Matmul GPU Case 1 Cache-OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs 3.3 Machine: Minotauro-MN4

Matmul running on the GPU without Cache. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000)             B: shape (56_900_000, 10)   block_size (11_380_000, 10)             C: shape (320, 10)                block_size (10, 10) Total dataset size 291 ...

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.797.1

Stable

Name: K-Means GPU Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

K-Means running on GPUs. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9

Average task execution time: 194 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.799.1

Stable

Name: K-Means GPU Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

K-Means running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9

Average task execution time: 16 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.800.1

Stable

Name: Dislib Distributed Training - Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

PyTorch distributed training of CNN on GPU and leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101

Average task execution time: 36 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.802.1

Stable

Name: Dislib Distributed Training - Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

PyTorch distributed training of CNN on GPU. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101

Average task execution time: 84 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.801.1

Lysozyme in water full COMPSs application run at MareNostrum IV, using full dataset with two workers

Type: COMPSs

Creator: Rosa M Badia

Submitter: Raül Sirvent

PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Kos-Bodrum 2017 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.

Powered by
(v.1.14.1)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH